An Overview of Synchrotron X-ray Absorption Spectroscopy

Paul Northrup

Brookhaven National Laboratory
Environmental Sciences Department
Environmental Research & Technology Division

NSLS HBCU Workshop July 19, 2007 "Nothing is so difficult but that it may be found out by seeking." -Terence (ca. 150 BC)

Applications of Synchrotron XAS

- A probe of chemical and structural state:
 - Oxidation state and chemical bonding
 - Local and short-range structures
- Element-specific and non-destructive
- Trace or major components, processes
- Applications to chemical, environmental, material and biological systems

Xray Absorption Spectroscopy:

• **Direct**: transmission through sample.

Absorption =
$$ln(lo/lt)$$

Three components of XAS:

- Edge step
- Electron transitions
- Extended oscillations
- Each carries different information.

Absorption edge step

Fe K absorption edge

- Standards:

- Hematite: Fe³⁺ oxide

- Vivianite: Fe²⁺ phosphate

Sediment samples at different depths

Indicative of redox processes

Electron transitions

- Promotion of electron to available (unfilled) level of absorbing atom -- or neighbor.
- Peak energy differs from edge energy.
- Sensitive to electronic configuration and bonding.

• Rules:	Allowed:	Forbidden:
	s-p	S-S
	p-s	p-p
	p-d	d-d
	d-p	

d-f

Uranium L₃ and M₅ edges

- L₃ absorption edge indicates oxidation state
- M₅ edge dominated by 3d > 5f transition

• Importance: U⁶⁺ highly soluble, U⁴⁺ relatively immobile

S K edge

- 2 edge steps (oxidation states)
- 1s to 3p electron transition:

1: sulfide/thiol (R-S-R/R-SH),

2: thiophene,

3: sulfoxide (R-(SO)-R),

4: sulfite/sulfone

 $(R-OSO_2^-/R-(SO_2)-R),$

5: sulfonate (R-SO₃-),

6: sulfate ester (R-OSO₃-)

Organic S species

- Sulfur in sediments
- Sulfate (bio)reduction

- Sulfur in plant roots
- Physiological response to toxin (Zn)

"Soft" X-rays:

- C, N, O edges, very low energy
- Spectral analysis is used to image distribution of different organic compounds and oxides

 Extended oscillations due to backscatter of electron from neighboring atoms

• Interference pattern:

Distance

2450

2500

- What element (size)
- Coordination number

positional/vibrational disorder

E (eV)

2600

EXAFS data analysis

- Example: S in ZnS
- Convert to frequency (not linear with energy)
- Fourier transform to resolve multiple frequencies

Limitations

- General:
 - Complexity of spectrum -- all components superimposed
 - Complexity of sample -- shows "Average" configuration
 - Experimental challenges -- sample prep & preservation, energy ranges, interferences, etc.
- EXAFS:
 - requires single species
 - needs greater energy range & concentration
 - fits a model -- model must be close
 - easily abused by over-interpretation